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This paper examines di!erent regimes of non-linear modal interactions of
shallow suspended cables. In a high-energy level, the equations of motion in terms
of in-plane and out-of-plane co-ordinates are strongly coupled and cannot be
linearized. For this type of problem, a special co-ordinate transformation is
introduced to reduce the number of strongly non-linear di!erential equations by
one. The resulting equations of motion are written in terms of stretching, transverse
(geometrical bending), and swinging co-ordinates, and are suitable for analysis
using standard quantitative and qualitative techniques. Both free and forced
vibrations of the cable are considered for in-plane and out-of-plane motions. The
cable stretching free vibrations results in parametric excitation to the cable
transverse motion. Under in-plane forced excitation the stretching motion is
directly excited while the transverse motion is parametrically excited.
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1. INTRODUCTION

Within the framework of the linear theory of suspended cables, one can determine
the natural frequencies and mode shapes of in-plane and out-of-plane motions. For
small sag-to-span ratio, the symmetric in-plane modes are governed by a parameter
which is a function of cable geometry and elasticity [1, 2]. The in#uence of tension
and de#ection induced by dynamically exciting a suspended cable was examined by
Irvine and Gri$n [3]. This in#uence is mainly found due to a resonant-like
phenomenon. The e!ect of weak non-linearities on the normal-mode natural
frequencies was found to produce considerable variation in the cable natural
frequencies [4]. The non-linear free vibration analysis was then further studied
[4}7] and it was shown that the dynamical behavior is either hardening or
softening, depending on cable properties. In addition to regular periodic motion,
complex chaotic motion was predicted for certain excitation and cable parameters;
see for example references [8, 9].

The non-linear modal interaction between in-plane and out-of-plane modes has
been examined by several authors [5, 10}12]. Under external excitation of the "rst
in-plane mode, the out-of-plane mode can be indirectly excited if the natural
frequencies of the in-plane and out-of-plane modes are close to the ratio 2 : 1. The
0022-460X/99/410001#28 $30.00/0 ( 1999 Academic Press
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analysis has been extended to include three- and four-mode interactions by Lee and
Perkins [13]. This type of modelling can result in the existence of simultaneous
internal resonance conditions among the interacting modes. The presence of
simultaneous internal resonances can result in quasi-periodic and chaotic motions.
The analytical models of single- or multi-modal interaction in the previous
investigations were obtained using Galerkin's method for discretizing the original
partial di!erential equations of the continuum. However, this type of discretization
has been questioned by Pakdemirli et al. [14] for cables with non-zero sag.

Rega et al. [7] have shown that one-mode approximation for a shallow cable
generally yields a strongly non-linear oscillator with more than one "xed point, i.e.,
an oscillator with a non-local structure of the phase portraits. For many cases of
a reduced single-degree-of-freedom system, the phase plane representation and the
energy integral give a su$ciently complete description of the essentially non-linear
behavior. Simple numerical experiments showed that a qualitatively reasonable
description of the non-linear dynamical regimes of a shallow cable can be provided
based on at least a two-mode approximation. Moreover, the modal co-ordinates
are strongly coupled. In such multi-dimensional cases, phase-plane representation is
not applicable and the energy integral does not give a complete description of the
cable motion.

This paper introduces a special type of co-ordinate transformation which
provides a description of the in-plane and out-of-plane motions. The new co-
ordinates are constructed along and perpendicular to the unstretched manifold, i.e.,
the manifold of cable positions with identical centerline lengths. The new co-
ordinates have a certain physical meaning, and the analytical modelling has the
advantage of reducing the number of non-linear equations of motion by one
equation. Speci"c examples are given to demonstrate the technique. The present
form of the transformation was proposed originally for di!erent models of shallow
elastic shells [15]. However, the classic cable model possesses some special features,
such as absolute #exibility of its centerline, and the possibility of signi"cant
amplitudes of both in-plane and out-of-plane (swinging) motions. As a rule, the
cable transverse motion is accompanied by small oscillation of the centerline length
about its pre-stretched state; however, the cable model generally does not admit
any compression. This means that the centerline oscillation of su$ciently large
amplitude should become unstable and non-realizable practically. From the
mathematical point of view, the negative tension changes type of the cable partial
di!erential equations of motion (from hyperbolic to elliptic) and results in the
ill-posed problem reported by Triantafyllou and Howell [16]. With reference to
this work, it will be shown (see section 6) that the problem becomes well-posed if
a small bending rigidity is included into the model.

2. EQUATIONS OF MOTION

The system under consideration is shown in Figure 1. In the absence of
a gravitational "eld, the cable lies in the xz plane, and an arbitrary point P of the
cable has the co-ordinates (x, 0, w

0
), where w

0
"w

0
(x) describes the undeformed

elastic line of the cable. Under gravitational "eld and environmental excitation the



Figure 1. Schematic diagram of a shallow cable showing the co-ordinate system.
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co-ordinates of P are changed from (x, 0, w
0
) to (x#u, v, w), where u"u (x, t) and

v"v(x, t) are displacements of the point along the x and y directions, respectively,
and w"w(x, t) is the z co-ordinate of the same point at the deformed position. It is
assumed that a longitudinal component of the particle velocity is negligible
compared to transverse ones. Note that this assumption is frequently used in the
dynamical theory of elastic shallow structures, starting from Kirchho!'s work [17].
Regarding the cable, this assumption was introduced and justi"ed by Irvine and
Caughey [2]. The elimination of the longitudinal velocity component does not
completely eliminate the stretching rigidity in#uence on a time scale of transverse
(in-plane or out-of-plane) motions associated with cable stretching.

Under this assumption, the Lagrangian function of the cable can be written as

¸"P
l

0
G
oA
2

(v2
, t
#w2

, t
)!

EA
2

e2#[ogA#f (x, t)]wH ds, (1)

where l is the original length of the cable; subscripts preceded by a comma denote
di!erentiation with respect to the subscripted variable; o is the density (mass/unit
volume) of the cable; A is the original cross-sectional area, which is assumed to be
constant; E is Young's modulus of elasticity; g is the gravitational acceleration;
f (x, t) is a distributed external in-plane force acting upon the cable in addition to
the cable weight; and

e"
[(1#u

,x
)2#v2

,x
#w2

,x
]1@2

[1#w2
0,x
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!1 (2)

is the longitudinal strain of the cable.
Under the assumption that the cable is shallow (i.e., the sag-to-length ratio is very

small and the cable has a small slope), the following relationships hold:

Dv
,x

D@1, Dw
,x

D@1, Du D"O (v2, w2) (3)

The last equality justi"es the elimination of the longitudinal component of velocity
in the kinetic energy expression. Expanding relation (2) and keeping only terms up
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to second order gives
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0,x
). (4)

Note that although this expression has a weakly non-linear form, however, it will
result in strong non-linear equations of motion due to the presence of more than
one "xed point, as will be shown later.

The partial di!erential equations of motions can be obtained by means of the
Hamilton principle:
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where I is the action, d denotes variation, ds has been replaced by dx, and l by the
span of the cable H, based on relations (3).

Using relation (4) for evaluating the partial derivatives of e, integrating by parts
with respect to x and t, and taking into account the boundary conditions

u(0, t)"u(H, t)"0, v(0, t)"v (H, t)"0, w(0, t)"w(H, t)"0, (5)

one obtains
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This gives the following equations of motion:
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where p(x, t),f (x, t)/(ogA).
These equations describe the horizontal, u(x, t), and v (x, t) and the vertical w(x, t)

co-ordinates of point P. The "rst relation reveals that the strain e is only a function
of time. In this case, one can express the displacement u in terms of the other
displacements using relation (4), i.e.,

u (x, t)"ex!
1
2 P

x

0

(v2
,x
#w2

,x
!w2

0,x
) dx.

Using the boundary condition for x"H, u (H, t)"0, one de"nes the value of the
strain as

e"
1
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) dx. (7)



NON-LINEAR MODAL INTERACTIONS 5
The additional equations for the co-ordinates v (x, t) and w(x, t) can be rewritten
as

v
, tt
!

E
o

ev
,xx

"0, w
, tt
!

E
o

ew
,xx

"g(1#p (x, t) ). (8)

The same di!erential equations were considered by Lee and Perkins [12, 13].
The only di!erence is that in the present analysis the value w"w (x, t) is the
co-ordinate measured from the horizontal level, but it was considered as the
displacement measured from the static equilibrium position in references [12, 13].
A special feature of equations (8) is that the co-ordinate values w"v"u"0 do
not correspond to the cable's equilibrium, and hence a linearization around
w"v"u"0 is not physically reasonable. However, this feature is not related to
the purpose of the present work, because the linearization will be done around the
manifold of unstretched centerline positions (e"0), and not around the original
equilibrium. From the standpoint of the proposed transformations, the chosen
co-ordinate systems gives an essential advantage since it brings an expression for
the strain e into its simplest form (7).

The undeformed centerline length will be state by a con"guration at which

u"0, v"0, w"w
0
(x)"D

0
sin (nx/H), (9)

where D
0

is constant.
The selected con"guration (9) is suitable because it is close to the stable static

equilibrium, and the coe$cient D
0

gives a good estimate for the cable sag in the
static equilibrium position. Note that con"guration (9) is not an exact equilibrium
position since the function w

0
(x) does not satisfy the static equation,

!(E/o)ew
,xx

"g.
The original (unstretched) length of the cable under the assumption of small sag

is expressed by parameters H, D
0

as
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Finally, introducing the dimensionless parameters
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e"(H/D
0
)2 e,eM=, <],

the equation of motion and the boundary conditions take the form
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is a strain functional of the cable, and

k"ogH4/(ED3
0
) (15)

is a dimensionless gravity parameter.
We consider the cable dynamics when the cable centerline displacement can be of

order of the sag, i.e., in terms of the original co-ordinates the following expressions
hold:

v(x, t)&w(x, t)&w
0
(x) (16)

This means that both linear and non-linear terms in equations (12) can have
the same order of magnitude. This assumption, however, does not contradict
the weakly non-linear approximation of the cable strain (4). In fact, the
approximation for strain has been obtained under the condition that
u
,x

(x, t), v
,x

(x, t), w
,x

(x, t), w
0,x

(x, t), are small enough compared with 1, but this
does not contradict relationship (16).

3. FREE VIBRATION OF THE FIRST TWO IN-PLANE MODES

In this section, physical treatment of the simple case of two in-plane modes
motion and some numerical simulations will be demonstrated in order to justify the
need for a special co-ordinate transformation. For example, in the absence of
gravity, the cable equilibrium positions are obtained by eliminating the inertia
terms and setting k"0 in equations (12). In this case, one obtains the trivial
solution="0, <"0, which corresponds to an extremely compressed cable. This
equilibrium is unstable and hardly realizable physically. Other roots of the static
equilibrium are given by the relationship

e[=, <]"0. (17)

This equation describes a manifold of the cable con"guration with no stretching
deformation, i.e., the cable preserves its length on the manifold. Under physically
realizable conditions the length of the cable will not be signi"cantly changed during
the motion. This implies that at any time instant the cable is su$ciently close to the
manifold described by equation (17). However, it is not necessarily close to the
original equilibrium position.

To demonstrate this, consider the case of free in-plane vibration with two-mode
approximation

="=
1
(q) sin ng#=

2
(q)sin 2ng, =

0
"sinng,

<,0, p,0.

The related trigonometric expansion for constant gravitational force in equation
(12) includes only odd harmonics, and its &&two-modes'' representation is
k&(4k/n)sinng. Substituting these relationships into equations (12), and equating
coe$cients of sinng, sin 2ng to zero gives

=
1,qq#n2e(=

1
,=

2
)=

1
"4k/n, =

2,qq#4n2e (=
1
,=

2
)=

2
"0, (18)
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where

e (=
1
,=

2
)"(n2/4)(=2

1
#4=2

2
!1).

In terms of=
1

and=
2

co-ordinates the functional e becomes a function of=
1

and
=

2
. In this case, equations (18) describe two-mode free vibration of the cable. It

should be noted that the set Msin ng, sin 2ngN represents the exact normal modes of
the non-linear system under consideration in the absence of gravity (see the structure
of the left-hand parts of equations (18)). Here gravity leads to some changes in the
odd-order modes; however, it can be shown that for the shallow system these
changes are not signi"cant.

It is suitable to represent the motion of the system by its path in the con"guration
plane=

1
=

2
. Figures 2(a), 3(a), and 4(a) give examples of the path which has been

obtained by numerical simulations of equations (18) for di!erent total energy levels
in comparison with the saddle-point level E* (see below). Figures 2(b), 3(b), and 4(b)
represent the corresponding time-history records.
Figure 2. (a) Trajectory in the con"guration space of the cable motion described by two in-plane
modes for low total energy E"0)0653(E* and k"0)09; (b) time-history records of two in-plane
modes for E"0)0653(E*, k"0)09, and initial conditions =

1
(0)"1)00059, =

2
(0)"0)0,

=0
1
(0)"0)0, =Q

2
(0)"!0)6.



Figure 3. (a) Trajectory in the con"guration space of the cable motion described by two in-plane
modes for higher total energy E"0)2437'E* and k"0)09; (b) time-history records of two in-plane
modes for E"0)2437'E*, k"0)09, and with initial conditions =

1
(0)"1)1, =

2
(0)"0)0,

=0
1
(0)"0)0, =Q

2
(0)"!0)45.
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To give a physical interpretation of the shape of these trajectories, we establish
surface of the potential energy of the system described by equations (18),

%"

n4

16
(=2

1
#4=2

2
!1)2!

4
n

k=
1
,

which is shown by Figure 5(a). Figure 5(b) shows the projection of the potential
energy on the=

1
=

2
plane. A potential hill at the center corresponds to the cable

state under maximum compression. The system moves relatively slowly along
a potential channel around the hill with a high vibration frequency in an
orthogonal direction to the channel. The slow motion corresponds to the cable's
transverse displacement, while the high-frequency oscillation belongs to cable
stretching. There are two stationary points at the channel bottom. One is the stable
original static position, and the other is an unstable saddle point (the inverted
position of the cable). Taking into account the surface symmetry with respect to



Figure 4. (a) Trajectory in the con"guration space for long time motion of two in-plane modes for
higher total energy level and same parameters as Figure 3(b); (b) long time-history records of two
in-plane modes for E"0.2437'E*, k"0.09 demonstrating the long-term irregular behavior.
Simulation is obtained using the fourth-order Runge}Kutta method with step of integration 0.0001.
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axis =
2
"0, the co-ordinates of these points can be found by solving the cubic

equation

=3
1
!=

1
!

16
n5

k"0.

This equation has three roots: the stable position=
1
"1#O(k), and two unstable

positions, the inverted position =
1
"!1#O (k) and the compressed almost

straight position =
1
"O (k). The energy level corresponding to the inverted

position can be easily calculated. For the value k"0)09, which is used for
numerical simulations, this energy is equal to %*"0)229184. The results of the
numerical simulation are obtained for two special cases.

(1) When the total energy of the system E"¹#% satis"es the condition
E@%*, the motion has a su$ciently regular character, as shown in Figures
2(a) and (b). This is a quasi-linear region. A typical sequence of the elastic



Figure 5. (a) Surface of the potential energy %1 "(16/n4)%(=
1
,=

2
)"(=2

1
#4=2

2
!1)2!k6=

1
,

for k6 "(64/n5)k"0.1; (b) projection of the potential energy surface on the=
1
,=

2
plane.
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lines of the cable for this vibration case is shown in Figure 6(a) for di!erent
values of t, where t is the angle which de"nes the relationship between the
co-ordinates=

1
,=

2
, such that =

2
/=

1
&(1/2) tan t.

(2) When the total energy has an order of %*, one has a signi"cant in#uence of
the unstable saddle point. As a result, the system displays very complicated
behavior, as shown in Figures 3(a), (b) and 4(a), (b). Note that the motion of



Figure 6. (a) Cable con"gurations considering two in-plane mode representation for di!erent
values of the angle t in the neighborhood of the static equilibrium position; (b) global cable
con"gurations considering two in-plane mode representation for di!erent values of the angle t.
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the system can be qualitatively represented by the motion of a ball rolling on
the potential surface. Having the energy, E&%*, the ball is able to move on
the surface of negative curvature in the neighborhood of the saddle point.
(Possible positions of the elastic line of the cable are shown in Figure 6(b)). It
is known that a system on a surface of negative curvature can show
stochastic-like behavior. A full description of the corresponding, essentially
non-linear orbits is beyond the scope of the present work. However,
a technique for simpli"cation of the problem will be considered.

Note that the numerical results showed in these ,gures have been obtained for the
two-modes model in order to illustrate better and make clear a mathematical sense of
the coordinate transformation. It should be noted that some of the two-mode regimes
may become unstable with respect to any small perturbation of higher modes, and
hence it is hard to realize practically, as will be shown in section 6.
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4. NON-LINEAR CO-ORDINATE TRANSFORMATION

Based on qualitative features of the two-dimensional motion shown in the
previous section, the co-ordinates transformation will be introduced "rst in its
simplest form for the two in-plane modes model. The mathematical structure of the
transformation can then be generalized. Note that the system trajectory is located
around the ellipse e(=

1
,=

2
)"0 which gives the two-dimensional special manifold

(17). Figures 3 and 4 show that it is hardly possible to obtain the corresponding
solution starting from the linearized system about the original static equilibrium
position. However, it is possible to linearize the system on the normal to the ellipse
direction. For this reason, we will establish the transformation of variables in the
con"guration plane of the cable. With reference to Figure 7, one can write the
following transformation [15] M=

1
,=

2
N!'Mm, sN:

=
1
"=0

1
(s)#n

1
(s)m, =

2
"=0

2
(s)#n

2
(s)m, (19)

where (=0
1
,=0

2
)"(=0

1
(s),=0

2
(s)) is an arbitrary point on the ellipse

=2
1
#4=2

2
"1; s"s(q) is the arc length of the ellipse measured from the point

(=
1
,=

2
)"(1, 0); m"m(q) is the normal to the ellipse co-ordinate; and n

1
and

n
2

are the direction cosines of the normal vector. Note that the new co-ordinates
m and s possess a clear mechanical sense, where the variable m describes stretching,
and s de"nes the in-plane transverse motion of the cable.

The normal vector is de"ned by the relationships
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1
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2
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grad e(=0
1
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2
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2
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n
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1
#16=02

2
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2
"

4=0
2
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1
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2
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where ( D2 DR2 is the norm in R2).
Figure 7. Transformation of co-ordinates in the con"guration plane showing the normal m and
tangential s, t on the trajectory in the con"guration space =

1
,=

2
. The initial conditions for

trajectory are:=
1
(0)"1.1, =

2
(0)"0.0; =0

1
(0)"0.0,=0

2
(0)"!0.5.
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Substituting expressions (19) into the modal equations of motion (18) and taking
projections on the normal (n

1
, n

2
) and on the tangent (d=0

1
/ds, d=0

2
/ds),

respectively, gives the equations of motion in terms of the new co-ordinates m and s:

m
,qq#[u2

0
(s)!k2 (s) s2

, q]m"(4k/n)n
1
(s)#k(s)s2

, q , (21)

[1#k(s)m]s
, qq#2k(s)s

,qm,q"(4k/n)=
1, s

(s)!k
, s
(s)s2

, qm,

where

u2
0
(s)"(n4/2) [=02

1
(s)#16=02

2
(s)]

de"nes the square of the stretching natural frequency when s is frozen, and

k(s)"n
1,s

(s)=
1,s

(s)#n
2, s
=

2, s
(s)

is the ellipse curvature at the point de"ned by s.
Note that the system is linearized about m"0 as stated earlier. Furthermore,

a relationship between the normal and the tangent vectors n
i, s

(s)"k=
i,s

(s),
i"1, 2, has been used. Equations (21) are more suitable for analysis because they
have a linear form with respect to m. It is obvious that the e!ective stretching
natural frequency depends implicitly on the time parameter q and explicitly on the
co-ordinate s and its time derivative.

We will not seek a solution for equations (21). We will obtain useful information
concerning the cable mechanical properties. For example, Figure 8 presents the
dependence of stretching frequency u

0
(s) on the cable position. The position is

de"ned by the angle t (see Figure 6(b)):

=0
1
"cos t, =0

2
"1

2
sint, ds2"1

4
(1#3 sin2 t) dt2, 0)t)2n.

Figure 8 reveals that the cable possesses the maximum stretching frequency at the
extreme transverse position.

The geometrical treatment of a two-mode in-plane motion on the con"guration
plane=

1
,=

2
enables one to introduce the co-ordinate transformation (19), and to

obtain a simpli"ed form of the equations of motion as given by equation (21). It is
Figure 8. Natural frequency of stretching at various transverse positions of the cable t.
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also possible to give the corresponding geometrical treatment in a three-
dimensional Euclidean space for a three-mode approximation of the cable
dynamics. For example, the "rst three in-plane modes =

1
,=

2
,=

3
will form an

ellipsoid,=2
1
#4=2

2
#9=2

3
"1, in the three-dimensional space of con"gurations

R3. The normal vector position n will be de"ned in terms of s
1

and s
2

co-ordinates
on the ellipsoid. For more than three modes, it is not easy to visualize the motion by
a similar approach. However, a geometrical treatment is possible, in terms of
functions' space (see Appendix A). A more formal way of generalization will be
presented in this section.

First, one has to obtain a transformation of the type (19) in terms of= (g, q) for
the general case of in-plane motion. This will be done by multiplying the "rst and
second equations of equation (19) by sin ng, sin 2ng, respectively, and adding the
two results. Taking into account the expressions for the normal vector components
(20), one may write

="=0(g, s)#n (g, s)m, (22)

where ="=
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where the de"nition S2Tg,:1
0

(2) dg has been used. For future transformation,
it is convenient to eliminate the numerical factor 2 in the denominator, and to use
the representation

n"!=0
,gg/u0

, u
0
"JS=02

,ggTg , (23)

which is normalized by the relationship Sn2Tg"1.
The function =0(g, s) describes an arbitrary unstretched con"guration of the

cable, i.e.,

e[=0, 0]"
1
2 P

1

0

(=02
,g !=2

0
)dg,

1
2

(S=02
,g Tg!S=2

0,gTg),0. (24)

The form of relationships (22)}(24) is suitable for the general case. Indeed one can
suppose that the expansion for= and=0 contain an arbitrary number of terms, N,
and the arc length s is replaced by a set of curvilinear co-ordinates, Ms

1
,2 , s

M
N, on

the M-dimensional ellipsoid, where M"N!1.
The next step is to generalize relationships (22) and (23) for the case when both

the in-plane and out-of-plane components of the motion take place. This can be
done by means of introducing the two-component vector function

;(g, q)"A
= (g, q)
<(g, q)B,
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where the original cable position is

;
0
(g)"A

=
0
(g)

0 B.
Relations (22)}(24) can be formally expanded in terms of the vector functions (see
the proof in Appendix A)

;";0(g; s
1
,2 , s

M
)#n (g; s

1
,2 , s

M
)m, (25)

n"
!;0

,gg
u

0

,!

1
u

0
A
=0

,gg
<0

,ggB , u
0
"JS;0T

,gg;0
,ggTg,D;0

,gg D , (26)

where the vector function ;0 de"nes the arbitrary position of the cable with
undeformed length, that is the following relationship holds:

e[=0,<0]"
1
2 P

1

0

(=02
,g #<02

,g !=2
0,g) dg,

1
2
(S=02

,g #<02
,g Tg!S=2

0,gTg),0

or

e[;0]"1
2
( D;0

,g D2!D;
0,g D2),0. (27)

The symbol DX D,JSXTXTg denotes the norm of the vector function, X(g), in the
space considered (see Appendix A). Accordingly, SXT XTg should be understood as
a scalar product. For example, the norm of the normal vector is

Dn D"JSnTnTg"
1
u

0

JS;0T
,gg;0

,ggTg"
u

0
u

0

"1.

The set Ms
1
,2 , s

M
N represents curvilinear orthogonal co-ordinates on the M-

dimensional ellipsoid. This ellipsoid is described in terms of vector functions ; by
the equation

e[;]"0. (28)

The dimension M is given by the expression M"N#K!1, where N and K are
the number of in-plane and out-of-plane modes, respectively. Thus N#K is the
complete dimesion of the con"guration space considered. An arbitrary point on the
ellipsoid, ;0, corresponds to the arbitrary position of the cable with undeformed
length (27). An explicit dependence ;0 (g; s

1
,2 , s

M
) on (s

1
,2 , s

M
) can be

established by using generalized spherical co-ordinates. This is not necessarily for
general transformations; however, it can be easily carried out for speci"c cases, as
will be shown later. To this end one must de"ne those functions which will play the
role of tangent vectors to the ellipsoid. These functions are

l
j
(g; s

1
,2 , s

M
)"

L;0 (g; s
1
,2 , s

M
)

Ls
j

, j"1,2 , M. (29)

All co-ordinates s
j
are assumed to be normalized so that the conditions

SlT
i
l
j
Tg"d

ij
, i, j"1,2 , M (30)

hold, where d
ij

is the Kronecker symbol.
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It can be shown (see Appendix A) that

SnTl
j
Tg"0 j"1,2 , M. (31)

To this end we write the cable equations of motion (12) in terms of the co-ordinate
vector ;(g, q) as

;
,qq!e[;];

,gg"kP, (32)

where

e[;]"1
2
( D;

,g D2!D;
0,g D2) (33)

is dimensionless strain;

P"A
1#p (g, q)

0 B
is a column-vector of the external force, including gravity.

We introduce the co-ordinate transformation

;(g, q)PMm(q); s
1
(q),2 , s

M
(q)N, (34)

where m corresponds to the normal vector n and s
j
, j"1,2 , M, de"ne the position

of the origin of the normal vector n on the ellipsoid ;0";0(g; s
1
(q),2 , s

M
(q)).

Thus, the shape of the cable at any moment q will be de"ned by the set of
co-ordinates Mm (q); s

1
(q),2 , s

M
(q)N. For example, for a two-mode approximation,

there are two new co-ordinates Mm (q); s(q)N as shown in Figure 7. The
transformation (34) is given by equation (25),

;";0#nm. (35)

When the m"0 expression (35) gives an arbitrary con"guration of zero strain,
e[;0]"0. For mO0 we substitute equation (35) into equation (33), taking into
account equation (26), and integrating by parts gives

e[;0#gm]"u
0
m#1

2
Dn

,g D2 m2. (36)

The last expression clearly shows that the normal co-ordinate, m, is associated
with the centerline strain.

Substituting equation (35) into the equation of motion (32) and taking into
account equation (36) one obtains

nm
,qq#(nu2

0
#n

,qq) m#2n
, qm, q#u

0
(1
2
Dn

,g D2 n!n
,gg) m2!1

2
Dn

,g D2 n
,ggm3"kP!;0

,qq.
(37)

Taking projections of this equation on the normal vector n and on the jth tangent
vector l

j
"L;0/Ls

j
in the sense of equations (30) and (31), and using the

relationship SnTn
,ggTg"!Dn

,g D2 (this is a result of integration by parts), one "nally
obtains the set of ordinary di!erential equations,

m
, qq#(u2

0
#SnTn

,qqTg) m#3
2
u

0
Dn

,g D2 m2#1
2
Dn

,g D4 m3"kSnTPTg!SnT;0
, qqTg , (38)

SlT
j
;0

,qqTg#SlT
j
n
, qqTg m#2SlT

j
n
,qTg m,q!SlT

j
n
,ggT (u

0
m2#1

2
Dn

,g D2 m3)"kSlT
j
PTg ,
(39)
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where

j"1,2 ,M.

These are 1#M non-linear ordinary di!erential equations. If the value M equals
in"nity, the equations are equivalent to the original set of partial di!erential
equations (32). Furthermore, these equations are written explicitly in terms of m and
implicitly in terms of the curvilinear co-ordinates s

j
on the ellipsoid. The explicit

form in terms of s
j
will be presented for speci"c cases. However, this set of equations

has the advantage that one can linearize the system with respect to the co-ordinate
m. Alternatively, one can consider quasi-linear system of equations with respect to m.

Now the dimension of the original non-linear problem N#K has been reduced
to M"N#K!1. Generally, the linear and non-linear parts of the system are
coupled. One possibility of decoupling these components is obtained under the
assumption that the cable weight is small compared to its elastic strength, i.e.,

k"
ogH4

ED3
0

@1, (40)

Under this assumption, one can asymptotically split the motion into two
components, slow and fast. The slow component belongs mainly to the swinging-
transverse motion and lies along the tangent with respect to the manifold direction.
The fast component, on the other hand, is due to cable extension and coincides with
the normal to the manifold.

5. ANALYSIS OF THE TRANSFORMED SYSTEM

5.1. EXAMPLE OF SWINGING}STRETCHING COUPLING

Consider the case of non-linear coupling between the "rst in-plane and "rst
out-of-plane modes,

;"A
=
<B"A

=
1
<

1
B sinng, =

1
"=

1
(q), <

1
"<

1
(q). (41)

Substituting this vector into the manifold equation (28) gives

e[;]"e(=
1
, <

1
),(n2/4)(=2

1
#<2

1
!1)"0. (42)

This manifold has the form of a circle in the con"guration plane=
1
<

1
. In terms of

the polar angle u(q), one obtains the expression for an arbitrary point on the circle
;0";0(g; u),

;0"A
cosu
sinuB sinng, (43)

with stretching frequency and the normal given by the expressions

u
0
"J2n2/2, n"J2;0

,gg . (44)
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For this case there is one co-ordinate on the manifold, s
1
,s, which can be

expressed in terms of the angle u by means of the relationship

ds2"DL;0/Lu D2 du2"(1/2)du2.

The factor 1/2 appears because the length is taken according to the de"nition
DX D,JSXTXTg. For the present case, the angle u de"nes an angle between the
plane of the cable and the original vertical plane during swinging oscillations.

The equations for m (q) and u(q) follow from equations (38) and (39). Keeping only
linear terms in m, one obtains the following coupled set of two ordinary di!erential
equations:

m
, qq#A

n4

2
!u2

, qB m"
2J2k

n
(1#p) cosu#

J2
2

u2
,q , (45)

1
2

(1#J2m)u
, qq#J2u

, qm, q"!

2k
n

(1#p) sin u. (46)

The original variables are expressed through stretching and swinging co-ordinates
m(q) and u(q), respectively, by means of relationship (35), and can be written as

w"D
0
(1#J2m) cosu sinng, v"D

0
(1#J2m) sin u sinng. (47)

Note that equations (45) and (46) are analogous to the equations of motion of an
elastic pendulum (see for example reference [18]). In order to apply the
corresponding results to the cable system, one must satisfy the condition of internal
resonance between the linear frequency of stretching, u

st
"J2n2/2, and the

frequency of swinging, u
sw
"2Jk/n. For example, when u

st
"2u

su the physical
parameter has the special value, k"n5/32, and the unperturbed system experiences
energy transfer from the stretching mode to the swinging mode. For large
amplitudes the situation becomes much more complicated, because of the essential
in#uence of the unstable inverted equilibrium u"n.

To this end two types of asymptotic approximation will be introduced. These
approximation will decouple the system such that the stretching co-ordinate can be
independently expressed as a function of swinging and transverse co-ordinates.

5.2. ASYMPTOTIC DECOUPLING OF THE SYSTEM

Under the condition of small gravity (40), one can introduce slow time, t0"Jkq,
and start from transformation (25), with

m"km6 (q)#o(k), ;0";M 0(g; s
1
(t0),2 , s

1
(t0))#o (1), p"pN (g, t0)#o(1),

(48)

where the symbol o (k) denotes higher order terms compared with k.
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Substituting equation (48) into equations (38) and (39), and keeping the leading
order terms, one obtains the set of equations

m6 A
, qq#u2

0
m6 "SnTPM Tg!TnT

L2;M 0
Lt02 Ug

, (49)

T
L;M 0T
Ls

j

L2;M 0
Lt02 Ug

"T
L;M 0T
Ls

j

PM Ug
, j"1,2 , M, (50)

where the function ;M 0 satis"es the equation for the special manifold,

K
L;M 0
Lg K

2
"K

L;
0

Lg K
2
, (51)

and

PM "A
1#pN (g, t0)

0 B
is the vector-column of the external excitation.

The Lagrange function corresponding to equation (50) can be written in the form

¸"

1
2 K

L;M 0
Lt0 K

2
#S;M 0TPM Tg. (52)

Now the system is asymptotically decoupled. The slow component of the motion is
described by the Lagrangian (52) on the manifold (51) independently of the fast
component. Within the framework of a given formulation, the fast component has
no in#uence on the slow one, but the parameters of the fast motion will slowly
change during the processs of the slow motion. In order to promote our
understanding of this method, we will study the problem of modal interaction of the
"rst two in-plane modes of the cable.

For example, let us consider the case of the "rst two in-plane modes. The
transformation (25) takes the form

;";M 0#knmN ,

where

;"A
=

1
sinng#W

2
sin 2ng

0 B, ;M 0"A
=M

1
(t0) sinng#=M

2
(t0) sin 2ng

0 B , (53)

n"A
n
w
0 B, n

w
"!J2

=M
1
(t0) sinng#4=M

2
(t0) sin 2ng

J=M 2
1
(t0)#16=M 2

2
(t0)

.

The original undeformed position of the cable and the external force are

;
0
"A

sinng
0 B, PM "A

1#p0 (t0)
0 B .
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Here the "rst mode represents the stretching e!ect while the second in-plane mode
is due to transverse motion. The expression for the special manifold (51) takes the
form

=M 2
1
#4=M 2

2
"1. (54)

Introducing the angular co-ordinate t(t0) on the ellipse (54) as =M
1
"cost(t0),

=M
2
"(1/2) sint(t0) one writes

;M 0"A
cost sinng#1

2
sin t sin 2ng

0 B . (55)

Substituting this expression into equation (49) and using equation (23) one obtains
the equation for the stretching variable m6 :

m6 A
, qq#u2

0
m6 "

2n
u

0

[1#p3(t0)] cost#

n2

2u
0
A
dt
dt0B

2
, (56)

u2
0
"

n4

2
(1#3 sin2 t).

In terms of the angle t(t0) the Lagrange function (52) takes the form

¸"

u2
0
(t)

8n4 A
dt
dt0B

2
#

2
n

[1#po (t0)] cost (57)

and the corresponding di!erential equation of motion is

u
0

4n4

d
dt0Au0

dt
dt0B#

2
n

[1#po(t0)] sint"0. (58)

This equation does not depend on the stretching amplitude governed by equation
(56). It is obvious that the original coupled co-ordinates =

1
and =

2
are

transformed into the new co-ordinates m and t with one way coupling as indicated
by equations (56) and (58). Equation (58) describes a parametrically excited
pendulum with a variable &&mass parameter'', u2

0
/(4n4), which depends on the angle

t. In the case of free vibration, po (t0),0, this equation possesses the "rst integral
and can be analytically solved in terms of quadratures as

$

1
4n3@2 P

t(t0)

t (0)

u
0
(t)dt

(C#cost)1@2
"t0, C, t(0)"const. (59)

Thus in the absence of external excitation the strongly non-linear coupled two
inplane modes (18) are described in an explicit analytical form. Indeed, solving for
the function t(t0) we can solve the linear equation for stretching (56). The solution
of equation (56) is easily obtained because the right-hand side of this equation is
slowly dependent on time t0. In order to describe the cable behavior in terms of the
original modal co-ordinates, transformation (35) should be used. It is hardly
possible to obtain any analytical solution directly without assuming weak non-
linearity if one starts from a set of ordinary di!erential equations for the modal
co-ordinates=

1
and=

2
as described by equations (18). In fact, the co-ordinates
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=
1

and=
2

are coupled, and any direct decoupling needs elimination of non-linear
terms which couple the two modes. But this is not correct because both co-ordinates
possess the same order of magnitude, O(1) for the case under consideration.

Under external excitation equation (58) should be solved numerically. For
equation (56), the stretching mode is excited directly, and as t increases the
contribution of the "rst expression on the right-hand side of equation (56) vanishes
when t"n/2. In this case the stretching amplitude reaches its minimum value.

Remark 1. The case of non-linear interaction between the "rst in-plane mode and
second out-of-plane mode,

;M 0"A
=M

1
(t0) sinng

<M
2
(t0) sin 2ngB (60)

will lead to a similar set of equations, when the corresponding manifold is
=M 2

1
#4<M 2

2
"1.

6. VALIDITY OF THE PROPOSED TREATMENT

Some qualitative remarks will be made here based on N in-plane and N out-of-
plane modes for the cable's centerline. The purpose of this analysis is to clarify how
the higher modes of the transverse motion may in#uence the centerlines length
oscillation. Speci"cally, the reduction of number of degrees of freedom (modes)
becomes quite questionable if the higher modes are unstable and their amplitudes
are increasing in time. The equations of motion will be written in terms of the
modal co-ordinates; however, the group of terms related to the centerlines length
oscillation will be expressed in terms of new co-ordinates on the special manifold in
order to simplify the problem. This &&mixed'' description is required by formulation
of the problem because one is going to investigate an in#uence of the stretching
oscillation on the modal co-ordinates.

Suppose that

;"A
=
<B"

N
+
k/1
A
=

k
(q)

<
k
(q)B sin kng, ;

0
"A

sinng
0 B (61)

and

P"

N
+
k/1
A
P
k
(q)
0 B sin kng. (62)

Substituting these expansions into equation (32) and taking into account that the
cable's strain e[;] does not depend on g, one obtains

=
k, qq#(kn)2 e[;]=

k
"kP

k
, <

k, qq#(kn)2 e[;]<
k
"0, k"1,2 ,N,

(63)

where the strain is given by substituting equation (61) into equation (33) as

e[;]"
n2

4 C
N
+
k/1

k2 (=2
k
#<2

k
)!1D. (64)
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Equations (63) show that the modal interaction owes its origin to the parametric
in#uence of the strain on the modes. This means that the time-history records of
various modes are a!ected by the time dependence of the strain. If one had an
explicit periodic dependence on time for the strain e[;], the problem of higher
modes' dynamical stability would be treated using the Floquet theory.
Unfortunately, the strain depends on time implicitly through all modal coe$cients
and one has a strongly coupled non-linear problem. However, the proposed
co-ordinates transformation simpli"es the problem signi"cantly. Namely, one can
express the strain in terms of the new co-ordinates by means of relation (36). In line
with the idea of transformation, the quadratic term of the stretching co-ordinate,
m(q), can be dropped and relation (36) takes the form

e[;]+u
0
m(q).

The linearized equation (38) for m(q) is

m
,qq#(u2

0
#SnTn

,qqTg) m"kSnTPTg!SnT;0
,qqTg , (65)

where the frequency u
0

and the normal vector n depend on the vector function

;0"A
=0

<0B"
N
+
k/1
A
=0

k
(q)

<0
k
(q)B sin kng

as

u2
0
"S;0T

,gg;0
,ggTg"

n4

2
N
+
k/1

k4(=02
k
#<02

k
), n"

n2

u
0

N
+
k/1

k2A
=0

k
<0

k
B sin kng.

Recall that ;0 indicates any unstretched con"guration of the cable, i.e., at any
time q the following condition holds (see equation (64)):

e[;0]"0N
N
+
k/1

k2(=02
k
#<02

k
)"1. (66)

As indicated earlier, the point ;0 is slowly moving on the manifold (66). Hence,
in order to estimate m in a leading-order approach, one can suppose that the cable
con"guration is frozen at an arbitrary point ;0 of the manifold. Under this
assumption, one has the equation

m
,qq#u2

0
m"

kn2

2u
0

N
+
k/1

k2=0
k
P

k
. (67)

Under static external force, a single-parameter family of solutions can be written
as

m"
kn2

2u3
0

N
+
k/1

k2=0
k
P
k
#A cosu

0
q, A"const. (68)

Substituting this expression into equations (64) and (63), and introducing a new
time parameter z"u

0
q/2, one obtains for the kth mode the Mathieu equation with



NON-LINEAR MODAL INTERACTIONS 23
constant right-hand side

d2=
k

dz2
#(a#2b cos 2z)=

k
"cP

k
,

d2<
k

dz2
#(a#2b cos 2z)<

k
"0, (69)

where

a"
2kn4k2

u4
0

N
+
k/1

k2=0
k
P

k
, b"

2An2k2

u
0

, c"
4k
u2

0

. (70)

In case of gravitational force, one has P
k
"(2/kn)[1!(!1)k].

Equation (69) enables one to estimate the future modes behavior around the
arbitrary con"guration of the cable close to the unstretched manifold. Note that the
constant right-hand side of the equation does not have any in#uence on the
problem of parametric instability.

We assume that a'0 during the motion. This condition physically means that
the cable's centerline is pre-stretched by the gravitational force, otherwise one
should expect the higher modes (kA1) to grow very fast after any small initial
perturbation. In terms of partial di!erential equations it results in an ill-posed
problem [16].

It is known that the Mathieu equation has a series of instability regions
represented on the plane of parameters a and b (the Ince}Strutt diagram), of which
the most dangerous goes throughout point (a, b)"(1, 0) and is bounded by the
couple of curves [19]:

a"1$b#terms of order b2. (71)

For example, let us consider the con"guration given by

=0
1
"1,=0

2
"0,2 ,=0

N
"0; <0

1
"0, <0

2
"0,2 ,<0

N
"0. (72)

In this case, u2
0
"n4/2 and

a"
32kk2

n5
, b"2J2Ak2, c"

8k
n4

. (73)

Substituting a and b from these expressions into equation (71), one can obtain
borders of the instability region and hence the region itself in terms, for instance,
A and k for "xed k. The instability region can be expressed as

DA D'
J2
4 K

1
k2

!

32k
n5 K , (74)

provided that the condition Db D"2J2 DA D k2@1 holds.
For a certain value of the gravity parameter k, one can estimate the stability

boundaries of higher modes in terms of the stretching amplitude, A. Or vice versa,
one can estimate which of the modes are unstable for a given amplitude. Around
the considered equilibrium position, the amplitude and initial value of the "rst
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mode are coupled through the relationship

=
1
(0)"1#

8k
n5

#J2A

when the initial velocity is zero.
From expression (74), it is seen that higher modes (k"O(Jn5/(32k))) may

become unstable even for very small values of the stretching amplitude, A. After one
or several of the modes became unstable, the system may leave the neighborhood of
point (72) and will change parameters (73) accordingly to equation (70). On the
other hand, one should bear in mind that the cable's model itself becomes
unreliable when the modes number is large, because the model requires the cable
centerline be shallow and absolutely #exible (section 2). Practically, the cable
always possesses a relatively small but non-zero bending rigidity. This rigidity is
negligible for low modes of a small curvature, but it becomes observable when the
centerline is highly bent as sin kng, (kA1).

A possible generalization may take into account di!erent factors, such as
bending and torsion deformations. However, in order to remain close to the classic
cable theory and at the same time to provide the model with desirable properties
one can include bending sti!ness only, using simple beam theory. Taking into
account the shallowness of the cable and the related expression for curvatures, the
equations of motion (8) can be modi"ed as

v
, tt
!

E
o

ev
,xx

#

EI
oA

v
,xxxx

"0,

w
, tt
!

E
o

ew
,xx

#

EI
oA

w
,xxxx

"g(1#p (x, t)), (75)

where a cross-section of the cable is supposed to be a circle and hence EI is the
bending rigidity with respect to any diameter of the section, and the boundary
conditions must be reformulated according to the beam theory.

In this case the vector equation of motion (32) will include an additional
(bending) term and it takes the form

;
, qq!e[;];

,gg#j;
,gggg"kP, (76)

where the non-dimensional bending rigidity parameter j"EI/(EAD2
0
) is assumed

to be very small.
Accordingly, one can modify the transformed equations (38) and (39) by taking

projections of the new expression j(;0#nm)
,gggg on the normal vector n and on the

jth tangent vector v
j
"L;0/Ls

j
to the special manifold. From the viewpoint of

transformed system, a role of the bending energy was investigated in reference [15]
based on a model of shallow elastic systems, including a non-linear beam with
initial imperfection (a shallow arch model) that may exhibit a snap-through
phenomenon.

To this end, let us show that the bending rigidity improves the stability properties
and can make the problem well-posed even under the negative tension of the cable.
According to the modi"ed equation (76), equations (63) for the modal co-ordinates
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have to be replaced by equations including the related bending terms, j (kn)4,

=
k, qq#[j (kn)4#(kn)2 e[;]]=

k
"kP

k
,

<
k, qq#[j(kn)4#(kn)2 e[;]]<

k
"0, k"1,2 ,N. (77)

In case of negative strain e[;](0, the bending rigidity for a certain value of
k will result in a positive sti!ness coe$cient and above that value of k the coe$cient
is always positive. This means that any small bending sti!ness j makes the problem
well-posed. The system becomes more stable dynamically as well, because the
bending term j (kn)4 shifts the system into a more stable region of the Ince}Strutt
diagram of the related Mathieu equation (69).

7. CONCLUSIONS

The non-linear modal interaction of a shallow cable describing large in-plane
and out-of-plane motions is treated using a special co-ordinate transformation.
Under certain conditions, the technique transforms n strongly non-linear coupled
di!erential equations into (n!1) coupled equations plus one equation (describing
cable stretching) whose output acts as an excitation to the other (n!1) equations.
The method has been demonstrated for di!erent cases of cable dynamics, including
in-plane non-linear motion plane and out-of-plane interaction in the presence and
in the absence of external excitation. In particular, an explicit analytical solution for
the free vibration of the "rst two in-plane modes has been obtained.

For a number of dynamical regimes of cable motion, the original set of partial
di!erential equations has been reduced to a set of ordinary di!erential equations
similar to those describing an elastic pendulum with internal resonance. The
corresponding mass parameter can be a constant or a variable depending on the
regime considered. For example, the stretching}swinging motion described by
equations (45) and (46) correspond to an elastic pendulum with a constant mass.
For the case of in-plane transverse motion the cable behavior resembles the
dynamics of a simple pendulum with a variable mass which depends on the
transverse motion of the cable (see equation (58)).
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APPENDIX A: ORTHOGONALITY CONDITION (31)

The purpose of this appendix is to establish the orthogonality condition given by
relation (31). The con"guration space involves functions consisting of su$ciently
smooth vector functions M;(g): ;(0)"; (1)"0N, and a norm D; D, which are
de"ned as, respectively,

;"A
= (g)
<(g)B , D; D"JS;T;Tg, S2Tg"P

1

0

(2) dg, (A.1)

where T denotes transpose.
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Remark 2. The length of a vector in the sense of an Euclidean norm, for example,
D2 DR2 in the plane =

1
,=

2
, and the length of the vector in the sense of the

functional con"guration subspace of the "rst two in-plane modes according to
de"nition (78), will di!er by a numerical factor

D (=
1
,=

2
) DR2"(=2

1
#=2

2
)1@2,

D=
1
sinng#=

2
sin 2ngD"

J2
2

(=2
1
#=2

2
)1@2.

For the general case, an arbitrary point of the con"guration space is expressed by
the expansion

;"A
=(g)
< (g)B"A

=
1
sinng#=

2
sin 2ng#2

<
1
sinng#<

2
sin 2ng#2 B

and its norm is given by

D; D"
J2
2

(=2
1
#=2

2
#2#<2

1
#<2

2
#2)1@2.

In order to establish the co-ordinate transformation, from strongly non-linear
co-ordinates to mixed linear}non-linear co-ordinates, we need to develop an
expression for the normal vector to the manifold (28). The problem is to determine
a function which will play the role of the gradient of the functional (28), e[;], in the
functional con"guration space. For example in the R2 geometry, let (=0

1
,=0

2
) be an

arbitrary point on the curve e(=
1
,=

2
)"0, and (=0

1
#d=

1
,=0

2
#d=

2
) be a close

point on the curve. One has the following truncated Taylor series:

e(=0
1
#d=

1
,=0

2
#d=

2
)"e(=0

1
,=0

2
)#e,=0

1
(=0

1
,=0

2
)d=

1
#e,=0

2
(=0

1
,=0

2
)d=

2
,

where higher order terms in d=
1
, d=

2
have been ignored. Taking into account that

both the original and new points belong to the curve, one writes

e,=0
1
(=0

1
,=0

2
)d=

1
#e,=0

2
(=0

1
,=0

2
)d=

2
"0.

This is an orthogonality condition of the two vectors. One of them, (d=
1
, d=

2
), is

tangent to the curve e(=
1
,=

2
)"0, and the other (e,=0

1
(=0

1
,=0

2
), e,=0

2
(=0

1
,=0

2
)) is

normal to the curve (gradient). Now, for the functional space, let;0 be an arbitrary
point on the manifold, e[;0],0, and ;0#d; a close point. In this case, one
writes

e[;0#d;]"e[;0]#S;0T
,g d;

,gTg .

The orthogonality condition in the terms of scalar product in the functional space is

S;0T
,g d;

,gTg"!S;0T
,ggd;Tg,

where integrating by parts has been used. Here d; is a tangent vector to the
manifold (28) at the point;0, and !;0

,gg is the normal vector, or the gradient. The
corresponding unit normal vector to the manifold is de"ned as

n"
grad e[;0]
Dgrad e[;0] D

"

!;0
,gg

u
0

, u
0
"Dgrad e[;0] D . (A.2)
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Let Ms
1
,2 , s

M
N be a set of orthogonal curvilinear co-ordinates at the manifold.

Generally, the number M is in"nite, but practically we always consider a "nite
number of in-plane modes N, and out-of-plane modes K. For this case one can
write M"N#K!1, where N#K is the complete dimension of the
con"guration space. Note that ML;0/Ls

1
,2 , L;0/Ls

M
N are tangent vectors with

respect to the manifold, and, hence one can write

TnT
L;0

Ls
i
Ug

"0, T
L;0T

Ls
i

L;0

Ls
j
Ug

"d
ij
, i, j"1,2 ,M, (A.3)

where the second relationship corresponds to our de"nition of the set Ms
1
,2 , s

M
N,

while the "rst can be easily veri"ed. In fact, using integration by parts, and
expression (28) for special manifold, gives

TnT
L;0

Ls
i
Ug

"!

1
u

0
T;0T

,gg
L;0

Ls
i
Ug

"

1
2u

0

LD;0
,g D2

Ls
i

"

1
2u

0

LD;
0,g D2

Ls
i

,0.

This completes the proof of the orthogonality condition.
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